Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Carbohydrate polymers ; 291:Not Available, 2022.
Article in English | EuropePMC | ID: covidwho-2318285

ABSTRACT

As a significant public health hazard with several drug side effects during medical treatment, searching for novel therapeutic natural medicines is promising. Sulfated polysaccharides from algae, such as fucoidan, have been discovered to have a variety of medical applications, including antibacterial and immunomodulatory properties. The review emphasized on the utilization of fucoidan as an antiviral agent against viral infections by inhibiting their attachment and replication. Moreover, it can also trigger immune response against viral infection in humans. This review suggested to be use the fucoidan for the potential protective remedy against COVID-19 and addressing the antiviral activities of sulfated polysaccharide, fucoidan derived from marine algae that could be used as an anti-COVID19 drug in near future.

2.
Carbohydr Polym ; 291: 119551, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1814196

ABSTRACT

As a significant public health hazard with several drug side effects during medical treatment, searching for novel therapeutic natural medicines is promising. Sulfated polysaccharides from algae, such as fucoidan, have been discovered to have a variety of medical applications, including antibacterial and immunomodulatory properties. The review emphasized on the utilization of fucoidan as an antiviral agent against viral infections by inhibiting their attachment and replication. Moreover, it can also trigger immune response against viral infection in humans. This review suggested to be use the fucoidan for the potential protective remedy against COVID-19 and addressing the antiviral activities of sulfated polysaccharide, fucoidan derived from marine algae that could be used as an anti-COVID19 drug in near future.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Sulfates
3.
Appl Biochem Biotechnol ; 194(3): 1390-1400, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1491373

ABSTRACT

Generally, rapid detection of viral infection is necessary for preventing the virus from spreading among people in a society as a pandemic. Although there are many effective standard techniques used for virus identification, they are laborious, required skilled person to handle and time-consuming. Particularly, the detection of viral infection involved in the isolation and nucleic acid detection by collecting specimens (sample) from the appropriate sites. For instance, oral or nasal swab, nasopharyngeal or tracheal extract, lung tissue, blood, sputum and feces are collected in order to investigate the pandemic, COVID-19 for the effective and rapid diagnosis and eventually for the treatment. In this mini-review, it is summarized that the advanced testing methods which include RNA, immunologic and radiological based tests that could be used to detect COVID-19 and their cost, reliability and functionality are discussed in this review. This mini-review might help the researcher and health care sector to plan the diagnostic procedures as per the severity of the new infection, COVID-19.


Subject(s)
COVID-19
4.
Microb Pathog ; 160: 105189, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401715

ABSTRACT

The outbreak of the novel coronavirus (COVID-19) has affected millions of lives and it is one of the deadliest viruses ever known and the effort to find a cure for COVID-19 has been very high. The purpose of the study was to investigate the anti-COVID effect from the peptides derived from microalgae. The peptides from microalgae exhibit antimicrobial, anti-allergic, anti-hypersensitive, anti-tumor and immune-modulatory properties. In the In silico study, 13 cyanobacterial specific peptides were retrieved based on the extensive literature survey and their structures were predicted using Discovery Studios Visualizer. The spike protein of the novel COVID19 was retrieved from PDB (6LU7) and further molecular docking was done with the peptides through CDOCKER. The five peptides were bound clearly to the spike protein (SP) and their inhibitory effect towards the SP was promising among 13 peptides were investigated. Interestingly, LDAVNR derived from S.maxima have excellent binding and interaction energy showed -113.456 kcal/mol and -71.0736 kcal/mol respectively to target SP of COVID. The further investigation required for the in vitro confirmation of anti-COVID from indigenous microalgal species for the possible remedy in the pandemic.


Subject(s)
Antiviral Agents/chemistry , Microalgae , Peptides/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Computer Simulation , Microalgae/chemistry , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL